Package: driveR 0.4.1.9001
driveR: Prioritizing Cancer Driver Genes Using Genomics Data
Cancer genomes contain large numbers of somatic alterations but few genes drive tumor development. Identifying cancer driver genes is critical for precision oncology. Most of current approaches either identify driver genes based on mutational recurrence or using estimated scores predicting the functional consequences of mutations. 'driveR' is a tool for personalized or batch analysis of genomic data for driver gene prioritization by combining genomic information and prior biological knowledge. As features, 'driveR' uses coding impact metaprediction scores, non-coding impact scores, somatic copy number alteration scores, hotspot gene/double-hit gene condition, 'phenolyzer' gene scores and memberships to cancer-related KEGG pathways. It uses these features to estimate cancer-type-specific probability for each gene of being a cancer driver using the related task of a multi-task learning classification model. The method is described in detail in Ulgen E, Sezerman OU. 2021. driveR: driveR: a novel method for prioritizing cancer driver genes using somatic genomics data. BMC Bioinformatics <doi:10.1186/s12859-021-04203-7>.
Authors:
driveR_0.4.1.9001.tar.gz
driveR_0.4.1.9001.zip(r-4.5)driveR_0.4.1.9001.zip(r-4.4)driveR_0.4.1.9001.zip(r-4.3)
driveR_0.4.1.9001.tgz(r-4.4-any)driveR_0.4.1.9001.tgz(r-4.3-any)
driveR_0.4.1.9001.tar.gz(r-4.5-noble)driveR_0.4.1.9001.tar.gz(r-4.4-noble)
driveR_0.4.1.9001.tgz(r-4.4-emscripten)driveR_0.4.1.9001.tgz(r-4.3-emscripten)
driveR.pdf |driveR.html✨
driveR/json (API)
NEWS
# Install 'driveR' in R: |
install.packages('driveR', repos = c('https://egeulgen.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/egeulgen/driver/issues
- KEGG_cancer_pathways_descriptions - KEGG 'Pathways in cancer'-related Pathways - Descriptions
- MTL_submodel_descriptions - MTL Sub-model Descriptions
- example_cohort_features_table - Example Cohort-level Features Table for Driver Prioritization
- example_cohort_scna_table - Example Cohort-level Somatic Copy Number Alteration Table
- example_features_table - Example Features Table for Driver Prioritization
- example_gene_scna_table - Example Gene-level Somatic Copy Number Alteration Table
- example_scna_table - Example Somatic Copy Number Alteration Table
- specific_thresholds - Tumor type specific probability thresholds
cancer-drivernessdriverdriver-gene-prioritizationidentify-driver-genesranking-genesscoring
Last updated 1 years agofrom:978fb132d8. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win | OK | Nov 21 2024 |
R-4.5-linux | OK | Nov 21 2024 |
R-4.4-win | OK | Nov 21 2024 |
R-4.4-mac | OK | Nov 21 2024 |
R-4.3-win | OK | Nov 21 2024 |
R-4.3-mac | OK | Oct 22 2024 |
Exports:create_features_dfpredict_coding_impactprioritize_driver_genes
Dependencies:abindAnnotationDbiaskpassBHBiobaseBiocGenericsBiocIOBiocParallelBiostringsbitbit64bitopsblobcachemcaretclasscliclockcodetoolscolorspacecpp11crayoncurldata.tableDBIDelayedArraydiagramdigestdplyre1071fansifarverfastmapforeachformatRfutile.loggerfutile.optionsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicAlignmentsGenomicFeaturesGenomicRangesggplot2globalsgluegowergtablehardhathttripredIRangesisobanditeratorsjsonliteKEGGRESTKernSmoothlabelinglambda.rlatticelavalifecyclelistenvlubridatemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeModelMetricsmunsellnlmennetnumDerivopensslorg.Hs.eg.dbparallellypillarpkgconfigplogrplyrpngpROCprodlimprogressrproxypurrrR6randomForestRColorBrewerRcppRCurlrecipesreshape2restfulrRhtslibrjsonrlangrpartRsamtoolsRSQLitertracklayerS4ArraysS4VectorsscalesshapesnowSparseArraySQUAREMstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselecttimechangetimeDateTxDb.Hsapiens.UCSC.hg19.knownGeneTxDb.Hsapiens.UCSC.hg38.knownGenetzdbUCSC.utilsutf8vctrsviridisLitewithrXMLXVectoryamlzlibbioc